Python-2.7.3/Objects/frameobject.c

Location Tool Test ID Function Issue
/builddir/build/BUILD/Python-2.7.3/Objects/frameobject.c:507:13 clang-analyzer Access to field 'co_nlocals' results in a dereference of a null pointer (loaded from field 'f_code')
/builddir/build/BUILD/Python-2.7.3/Objects/frameobject.c:507:13 clang-analyzer Access to field 'co_nlocals' results in a dereference of a null pointer (loaded from field 'f_code')
  1 /* Frame object implementation */
  2 
  3 #include "Python.h"
  4 
  5 #include "code.h"
  6 #include "frameobject.h"
  7 #include "opcode.h"
  8 #include "structmember.h"
  9 
 10 #undef MIN
 11 #undef MAX
 12 #define MIN(a, b) ((a) < (b) ? (a) : (b))
 13 #define MAX(a, b) ((a) > (b) ? (a) : (b))
 14 
 15 #define OFF(x) offsetof(PyFrameObject, x)
 16 
 17 static PyMemberDef frame_memberlist[] = {
 18     {"f_back",          T_OBJECT,       OFF(f_back),    RO},
 19     {"f_code",          T_OBJECT,       OFF(f_code),    RO},
 20     {"f_builtins",      T_OBJECT,       OFF(f_builtins),RO},
 21     {"f_globals",       T_OBJECT,       OFF(f_globals), RO},
 22     {"f_lasti",         T_INT,          OFF(f_lasti),   RO},
 23     {NULL}      /* Sentinel */
 24 };
 25 
 26 #define WARN_GET_SET(NAME) \
 27 static PyObject * frame_get_ ## NAME(PyFrameObject *f) { \
 28     if (PyErr_WarnPy3k(#NAME " has been removed in 3.x", 2) < 0) \
 29         return NULL; \
 30     if (f->NAME) { \
 31         Py_INCREF(f->NAME); \
 32         return f->NAME; \
 33     } \
 34     Py_RETURN_NONE;     \
 35 } \
 36 static int frame_set_ ## NAME(PyFrameObject *f, PyObject *new) { \
 37     if (PyErr_WarnPy3k(#NAME " has been removed in 3.x", 2) < 0) \
 38         return -1; \
 39     if (f->NAME) { \
 40         Py_CLEAR(f->NAME); \
 41     } \
 42     if (new == Py_None) \
 43         new = NULL; \
 44     Py_XINCREF(new); \
 45     f->NAME = new; \
 46     return 0; \
 47 }
 48 
 49 
 50 WARN_GET_SET(f_exc_traceback)
 51 WARN_GET_SET(f_exc_type)
 52 WARN_GET_SET(f_exc_value)
 53 
 54 
 55 static PyObject *
 56 frame_getlocals(PyFrameObject *f, void *closure)
 57 {
 58     PyFrame_FastToLocals(f);
 59     Py_INCREF(f->f_locals);
 60     return f->f_locals;
 61 }
 62 
 63 int
 64 PyFrame_GetLineNumber(PyFrameObject *f)
 65 {
 66     if (f->f_trace)
 67         return f->f_lineno;
 68     else
 69         return PyCode_Addr2Line(f->f_code, f->f_lasti);
 70 }
 71 
 72 static PyObject *
 73 frame_getlineno(PyFrameObject *f, void *closure)
 74 {
 75     return PyInt_FromLong(PyFrame_GetLineNumber(f));
 76 }
 77 
 78 /* Setter for f_lineno - you can set f_lineno from within a trace function in
 79  * order to jump to a given line of code, subject to some restrictions.  Most
 80  * lines are OK to jump to because they don't make any assumptions about the
 81  * state of the stack (obvious because you could remove the line and the code
 82  * would still work without any stack errors), but there are some constructs
 83  * that limit jumping:
 84  *
 85  *  o Lines with an 'except' statement on them can't be jumped to, because
 86  *    they expect an exception to be on the top of the stack.
 87  *  o Lines that live in a 'finally' block can't be jumped from or to, since
 88  *    the END_FINALLY expects to clean up the stack after the 'try' block.
 89  *  o 'try'/'for'/'while' blocks can't be jumped into because the blockstack
 90  *    needs to be set up before their code runs, and for 'for' loops the
 91  *    iterator needs to be on the stack.
 92  */
 93 static int
 94 frame_setlineno(PyFrameObject *f, PyObject* p_new_lineno)
 95 {
 96     int new_lineno = 0;                 /* The new value of f_lineno */
 97     int new_lasti = 0;                  /* The new value of f_lasti */
 98     int new_iblock = 0;                 /* The new value of f_iblock */
 99     unsigned char *code = NULL;         /* The bytecode for the frame... */
100     Py_ssize_t code_len = 0;            /* ...and its length */
101     unsigned char *lnotab = NULL;       /* Iterating over co_lnotab */
102     Py_ssize_t lnotab_len = 0;          /* (ditto) */
103     int offset = 0;                     /* (ditto) */
104     int line = 0;                       /* (ditto) */
105     int addr = 0;                       /* (ditto) */
106     int min_addr = 0;                   /* Scanning the SETUPs and POPs */
107     int max_addr = 0;                   /* (ditto) */
108     int delta_iblock = 0;               /* (ditto) */
109     int min_delta_iblock = 0;           /* (ditto) */
110     int min_iblock = 0;                 /* (ditto) */
111     int f_lasti_setup_addr = 0;         /* Policing no-jump-into-finally */
112     int new_lasti_setup_addr = 0;       /* (ditto) */
113     int blockstack[CO_MAXBLOCKS];       /* Walking the 'finally' blocks */
114     int in_finally[CO_MAXBLOCKS];       /* (ditto) */
115     int blockstack_top = 0;             /* (ditto) */
116     unsigned char setup_op = 0;         /* (ditto) */
117 
118     /* f_lineno must be an integer. */
119     if (!PyInt_Check(p_new_lineno)) {
120         PyErr_SetString(PyExc_ValueError,
121                         "lineno must be an integer");
122         return -1;
123     }
124 
125     /* You can only do this from within a trace function, not via
126      * _getframe or similar hackery. */
127     if (!f->f_trace)
128     {
129         PyErr_Format(PyExc_ValueError,
130                      "f_lineno can only be set by a"
131                      " line trace function");
132         return -1;
133     }
134 
135     /* Fail if the line comes before the start of the code block. */
136     new_lineno = (int) PyInt_AsLong(p_new_lineno);
137     if (new_lineno < f->f_code->co_firstlineno) {
138         PyErr_Format(PyExc_ValueError,
139                      "line %d comes before the current code block",
140                      new_lineno);
141         return -1;
142     }
143     else if (new_lineno == f->f_code->co_firstlineno) {
144         new_lasti = 0;
145         new_lineno = f->f_code->co_firstlineno;
146     }
147     else {
148         /* Find the bytecode offset for the start of the given
149          * line, or the first code-owning line after it. */
150         char *tmp;
151         PyString_AsStringAndSize(f->f_code->co_lnotab,
152                                  &tmp, &lnotab_len);
153         lnotab = (unsigned char *) tmp;
154         addr = 0;
155         line = f->f_code->co_firstlineno;
156         new_lasti = -1;
157         for (offset = 0; offset < lnotab_len; offset += 2) {
158             addr += lnotab[offset];
159             line += lnotab[offset+1];
160             if (line >= new_lineno) {
161                 new_lasti = addr;
162                 new_lineno = line;
163                 break;
164             }
165         }
166     }
167 
168     /* If we didn't reach the requested line, return an error. */
169     if (new_lasti == -1) {
170         PyErr_Format(PyExc_ValueError,
171                      "line %d comes after the current code block",
172                      new_lineno);
173         return -1;
174     }
175 
176     /* We're now ready to look at the bytecode. */
177     PyString_AsStringAndSize(f->f_code->co_code, (char **)&code, &code_len);
178     min_addr = MIN(new_lasti, f->f_lasti);
179     max_addr = MAX(new_lasti, f->f_lasti);
180 
181     /* You can't jump onto a line with an 'except' statement on it -
182      * they expect to have an exception on the top of the stack, which
183      * won't be true if you jump to them.  They always start with code
184      * that either pops the exception using POP_TOP (plain 'except:'
185      * lines do this) or duplicates the exception on the stack using
186      * DUP_TOP (if there's an exception type specified).  See compile.c,
187      * 'com_try_except' for the full details.  There aren't any other
188      * cases (AFAIK) where a line's code can start with DUP_TOP or
189      * POP_TOP, but if any ever appear, they'll be subject to the same
190      * restriction (but with a different error message). */
191     if (code[new_lasti] == DUP_TOP || code[new_lasti] == POP_TOP) {
192         PyErr_SetString(PyExc_ValueError,
193             "can't jump to 'except' line as there's no exception");
194         return -1;
195     }
196 
197     /* You can't jump into or out of a 'finally' block because the 'try'
198      * block leaves something on the stack for the END_FINALLY to clean
199      * up.      So we walk the bytecode, maintaining a simulated blockstack.
200      * When we reach the old or new address and it's in a 'finally' block
201      * we note the address of the corresponding SETUP_FINALLY.  The jump
202      * is only legal if neither address is in a 'finally' block or
203      * they're both in the same one.  'blockstack' is a stack of the
204      * bytecode addresses of the SETUP_X opcodes, and 'in_finally' tracks
205      * whether we're in a 'finally' block at each blockstack level. */
206     f_lasti_setup_addr = -1;
207     new_lasti_setup_addr = -1;
208     memset(blockstack, '\0', sizeof(blockstack));
209     memset(in_finally, '\0', sizeof(in_finally));
210     blockstack_top = 0;
211     for (addr = 0; addr < code_len; addr++) {
212         unsigned char op = code[addr];
213         switch (op) {
214         case SETUP_LOOP:
215         case SETUP_EXCEPT:
216         case SETUP_FINALLY:
217             blockstack[blockstack_top++] = addr;
218             in_finally[blockstack_top-1] = 0;
219             break;
220 
221         case POP_BLOCK:
222             assert(blockstack_top > 0);
223             setup_op = code[blockstack[blockstack_top-1]];
224             if (setup_op == SETUP_FINALLY) {
225                 in_finally[blockstack_top-1] = 1;
226             }
227             else {
228                 blockstack_top--;
229             }
230             break;
231 
232         case END_FINALLY:
233             /* Ignore END_FINALLYs for SETUP_EXCEPTs - they exist
234              * in the bytecode but don't correspond to an actual
235              * 'finally' block.  (If blockstack_top is 0, we must
236              * be seeing such an END_FINALLY.) */
237             if (blockstack_top > 0) {
238                 setup_op = code[blockstack[blockstack_top-1]];
239                 if (setup_op == SETUP_FINALLY) {
240                     blockstack_top--;
241                 }
242             }
243             break;
244         }
245 
246         /* For the addresses we're interested in, see whether they're
247          * within a 'finally' block and if so, remember the address
248          * of the SETUP_FINALLY. */
249         if (addr == new_lasti || addr == f->f_lasti) {
250             int i = 0;
251             int setup_addr = -1;
252             for (i = blockstack_top-1; i >= 0; i--) {
253                 if (in_finally[i]) {
254                     setup_addr = blockstack[i];
255                     break;
256                 }
257             }
258 
259             if (setup_addr != -1) {
260                 if (addr == new_lasti) {
261                     new_lasti_setup_addr = setup_addr;
262                 }
263 
264                 if (addr == f->f_lasti) {
265                     f_lasti_setup_addr = setup_addr;
266                 }
267             }
268         }
269 
270         if (op >= HAVE_ARGUMENT) {
271             addr += 2;
272         }
273     }
274 
275     /* Verify that the blockstack tracking code didn't get lost. */
276     assert(blockstack_top == 0);
277 
278     /* After all that, are we jumping into / out of a 'finally' block? */
279     if (new_lasti_setup_addr != f_lasti_setup_addr) {
280         PyErr_SetString(PyExc_ValueError,
281                     "can't jump into or out of a 'finally' block");
282         return -1;
283     }
284 
285 
286     /* Police block-jumping (you can't jump into the middle of a block)
287      * and ensure that the blockstack finishes up in a sensible state (by
288      * popping any blocks we're jumping out of).  We look at all the
289      * blockstack operations between the current position and the new
290      * one, and keep track of how many blocks we drop out of on the way.
291      * By also keeping track of the lowest blockstack position we see, we
292      * can tell whether the jump goes into any blocks without coming out
293      * again - in that case we raise an exception below. */
294     delta_iblock = 0;
295     for (addr = min_addr; addr < max_addr; addr++) {
296         unsigned char op = code[addr];
297         switch (op) {
298         case SETUP_LOOP:
299         case SETUP_EXCEPT:
300         case SETUP_FINALLY:
301             delta_iblock++;
302             break;
303 
304         case POP_BLOCK:
305             delta_iblock--;
306             break;
307         }
308 
309         min_delta_iblock = MIN(min_delta_iblock, delta_iblock);
310 
311         if (op >= HAVE_ARGUMENT) {
312             addr += 2;
313         }
314     }
315 
316     /* Derive the absolute iblock values from the deltas. */
317     min_iblock = f->f_iblock + min_delta_iblock;
318     if (new_lasti > f->f_lasti) {
319         /* Forwards jump. */
320         new_iblock = f->f_iblock + delta_iblock;
321     }
322     else {
323         /* Backwards jump. */
324         new_iblock = f->f_iblock - delta_iblock;
325     }
326 
327     /* Are we jumping into a block? */
328     if (new_iblock > min_iblock) {
329         PyErr_SetString(PyExc_ValueError,
330                         "can't jump into the middle of a block");
331         return -1;
332     }
333 
334     /* Pop any blocks that we're jumping out of. */
335     while (f->f_iblock > new_iblock) {
336         PyTryBlock *b = &f->f_blockstack[--f->f_iblock];
337         while ((f->f_stacktop - f->f_valuestack) > b->b_level) {
338             PyObject *v = (*--f->f_stacktop);
339             Py_DECREF(v);
340         }
341     }
342 
343     /* Finally set the new f_lineno and f_lasti and return OK. */
344     f->f_lineno = new_lineno;
345     f->f_lasti = new_lasti;
346     return 0;
347 }
348 
349 static PyObject *
350 frame_gettrace(PyFrameObject *f, void *closure)
351 {
352     PyObject* trace = f->f_trace;
353 
354     if (trace == NULL)
355         trace = Py_None;
356 
357     Py_INCREF(trace);
358 
359     return trace;
360 }
361 
362 static int
363 frame_settrace(PyFrameObject *f, PyObject* v, void *closure)
364 {
365     PyObject* old_value;
366 
367     /* We rely on f_lineno being accurate when f_trace is set. */
368     f->f_lineno = PyFrame_GetLineNumber(f);
369 
370     old_value = f->f_trace;
371     Py_XINCREF(v);
372     f->f_trace = v;
373     Py_XDECREF(old_value);
374 
375     return 0;
376 }
377 
378 static PyObject *
379 frame_getrestricted(PyFrameObject *f, void *closure)
380 {
381     return PyBool_FromLong(PyFrame_IsRestricted(f));
382 }
383 
384 static PyGetSetDef frame_getsetlist[] = {
385     {"f_locals",        (getter)frame_getlocals, NULL, NULL},
386     {"f_lineno",        (getter)frame_getlineno,
387                     (setter)frame_setlineno, NULL},
388     {"f_trace",         (getter)frame_gettrace, (setter)frame_settrace, NULL},
389     {"f_restricted",(getter)frame_getrestricted,NULL, NULL},
390     {"f_exc_traceback", (getter)frame_get_f_exc_traceback,
391                     (setter)frame_set_f_exc_traceback, NULL},
392     {"f_exc_type",  (getter)frame_get_f_exc_type,
393                     (setter)frame_set_f_exc_type, NULL},
394     {"f_exc_value", (getter)frame_get_f_exc_value,
395                     (setter)frame_set_f_exc_value, NULL},
396     {0}
397 };
398 
399 /* Stack frames are allocated and deallocated at a considerable rate.
400    In an attempt to improve the speed of function calls, we:
401 
402    1. Hold a single "zombie" frame on each code object. This retains
403    the allocated and initialised frame object from an invocation of
404    the code object. The zombie is reanimated the next time we need a
405    frame object for that code object. Doing this saves the malloc/
406    realloc required when using a free_list frame that isn't the
407    correct size. It also saves some field initialisation.
408 
409    In zombie mode, no field of PyFrameObject holds a reference, but
410    the following fields are still valid:
411 
412      * ob_type, ob_size, f_code, f_valuestack;
413 
414      * f_locals, f_trace,
415        f_exc_type, f_exc_value, f_exc_traceback are NULL;
416 
417      * f_localsplus does not require re-allocation and
418        the local variables in f_localsplus are NULL.
419 
420    2. We also maintain a separate free list of stack frames (just like
421    integers are allocated in a special way -- see intobject.c).  When
422    a stack frame is on the free list, only the following members have
423    a meaning:
424     ob_type             == &Frametype
425     f_back              next item on free list, or NULL
426     f_stacksize         size of value stack
427     ob_size             size of localsplus
428    Note that the value and block stacks are preserved -- this can save
429    another malloc() call or two (and two free() calls as well!).
430    Also note that, unlike for integers, each frame object is a
431    malloc'ed object in its own right -- it is only the actual calls to
432    malloc() that we are trying to save here, not the administration.
433    After all, while a typical program may make millions of calls, a
434    call depth of more than 20 or 30 is probably already exceptional
435    unless the program contains run-away recursion.  I hope.
436 
437    Later, PyFrame_MAXFREELIST was added to bound the # of frames saved on
438    free_list.  Else programs creating lots of cyclic trash involving
439    frames could provoke free_list into growing without bound.
440 */
441 
442 static PyFrameObject *free_list = NULL;
443 static int numfree = 0;         /* number of frames currently in free_list */
444 /* max value for numfree */
445 #define PyFrame_MAXFREELIST 200
446 
447 static void
448 frame_dealloc(PyFrameObject *f)
449 {
450     PyObject **p, **valuestack;
451     PyCodeObject *co;
452 
453     PyObject_GC_UnTrack(f);
454     Py_TRASHCAN_SAFE_BEGIN(f)
455     /* Kill all local variables */
456     valuestack = f->f_valuestack;
457     for (p = f->f_localsplus; p < valuestack; p++)
458         Py_CLEAR(*p);
459 
460     /* Free stack */
461     if (f->f_stacktop != NULL) {
462         for (p = valuestack; p < f->f_stacktop; p++)
463             Py_XDECREF(*p);
464     }
465 
466     Py_XDECREF(f->f_back);
467     Py_DECREF(f->f_builtins);
468     Py_DECREF(f->f_globals);
469     Py_CLEAR(f->f_locals);
470     Py_CLEAR(f->f_trace);
471     Py_CLEAR(f->f_exc_type);
472     Py_CLEAR(f->f_exc_value);
473     Py_CLEAR(f->f_exc_traceback);
474 
475     co = f->f_code;
476     if (co->co_zombieframe == NULL)
477         co->co_zombieframe = f;
478     else if (numfree < PyFrame_MAXFREELIST) {
479         ++numfree;
480         f->f_back = free_list;
481         free_list = f;
482     }
483     else
484         PyObject_GC_Del(f);
485 
486     Py_DECREF(co);
487     Py_TRASHCAN_SAFE_END(f)
488 }
489 
490 static int
491 frame_traverse(PyFrameObject *f, visitproc visit, void *arg)
492 {
493     PyObject **fastlocals, **p;
494     int i, slots;
495 
496     Py_VISIT(f->f_back);
497     Py_VISIT(f->f_code);
498     Py_VISIT(f->f_builtins);
499     Py_VISIT(f->f_globals);
500     Py_VISIT(f->f_locals);
501     Py_VISIT(f->f_trace);
502     Py_VISIT(f->f_exc_type);
503     Py_VISIT(f->f_exc_value);
504     Py_VISIT(f->f_exc_traceback);
505 
506     /* locals */
507     slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars);
Access to field 'co_nlocals' results in a dereference of a null pointer (loaded from field 'f_code')
(emitted by clang-analyzer)

TODO: a detailed trace is available in the data model (not yet rendered in this report)

Access to field 'co_nlocals' results in a dereference of a null pointer (loaded from field 'f_code')
(emitted by clang-analyzer)

TODO: a detailed trace is available in the data model (not yet rendered in this report)

508 fastlocals = f->f_localsplus; 509 for (i = slots; --i >= 0; ++fastlocals) 510 Py_VISIT(*fastlocals); 511 512 /* stack */ 513 if (f->f_stacktop != NULL) { 514 for (p = f->f_valuestack; p < f->f_stacktop; p++) 515 Py_VISIT(*p); 516 } 517 return 0; 518 } 519 520 static void 521 frame_clear(PyFrameObject *f) 522 { 523 PyObject **fastlocals, **p, **oldtop; 524 int i, slots; 525 526 /* Before anything else, make sure that this frame is clearly marked 527 * as being defunct! Else, e.g., a generator reachable from this 528 * frame may also point to this frame, believe itself to still be 529 * active, and try cleaning up this frame again. 530 */ 531 oldtop = f->f_stacktop; 532 f->f_stacktop = NULL; 533 534 Py_CLEAR(f->f_exc_type); 535 Py_CLEAR(f->f_exc_value); 536 Py_CLEAR(f->f_exc_traceback); 537 Py_CLEAR(f->f_trace); 538 539 /* locals */ 540 slots = f->f_code->co_nlocals + PyTuple_GET_SIZE(f->f_code->co_cellvars) + PyTuple_GET_SIZE(f->f_code->co_freevars); 541 fastlocals = f->f_localsplus; 542 for (i = slots; --i >= 0; ++fastlocals) 543 Py_CLEAR(*fastlocals); 544 545 /* stack */ 546 if (oldtop != NULL) { 547 for (p = f->f_valuestack; p < oldtop; p++) 548 Py_CLEAR(*p); 549 } 550 } 551 552 static PyObject * 553 frame_sizeof(PyFrameObject *f) 554 { 555 Py_ssize_t res, extras, ncells, nfrees; 556 557 ncells = PyTuple_GET_SIZE(f->f_code->co_cellvars); 558 nfrees = PyTuple_GET_SIZE(f->f_code->co_freevars); 559 extras = f->f_code->co_stacksize + f->f_code->co_nlocals + 560 ncells + nfrees; 561 /* subtract one as it is already included in PyFrameObject */ 562 res = sizeof(PyFrameObject) + (extras-1) * sizeof(PyObject *); 563 564 return PyInt_FromSsize_t(res); 565 } 566 567 PyDoc_STRVAR(sizeof__doc__, 568 "F.__sizeof__() -> size of F in memory, in bytes"); 569 570 static PyMethodDef frame_methods[] = { 571 {"__sizeof__", (PyCFunction)frame_sizeof, METH_NOARGS, 572 sizeof__doc__}, 573 {NULL, NULL} /* sentinel */ 574 }; 575 576 PyTypeObject PyFrame_Type = { 577 PyVarObject_HEAD_INIT(&PyType_Type, 0) 578 "frame", 579 sizeof(PyFrameObject), 580 sizeof(PyObject *), 581 (destructor)frame_dealloc, /* tp_dealloc */ 582 0, /* tp_print */ 583 0, /* tp_getattr */ 584 0, /* tp_setattr */ 585 0, /* tp_compare */ 586 0, /* tp_repr */ 587 0, /* tp_as_number */ 588 0, /* tp_as_sequence */ 589 0, /* tp_as_mapping */ 590 0, /* tp_hash */ 591 0, /* tp_call */ 592 0, /* tp_str */ 593 PyObject_GenericGetAttr, /* tp_getattro */ 594 PyObject_GenericSetAttr, /* tp_setattro */ 595 0, /* tp_as_buffer */ 596 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ 597 0, /* tp_doc */ 598 (traverseproc)frame_traverse, /* tp_traverse */ 599 (inquiry)frame_clear, /* tp_clear */ 600 0, /* tp_richcompare */ 601 0, /* tp_weaklistoffset */ 602 0, /* tp_iter */ 603 0, /* tp_iternext */ 604 frame_methods, /* tp_methods */ 605 frame_memberlist, /* tp_members */ 606 frame_getsetlist, /* tp_getset */ 607 0, /* tp_base */ 608 0, /* tp_dict */ 609 }; 610 611 static PyObject *builtin_object; 612 613 int _PyFrame_Init() 614 { 615 builtin_object = PyString_InternFromString("__builtins__"); 616 if (builtin_object == NULL) 617 return 0; 618 return 1; 619 } 620 621 PyFrameObject * 622 PyFrame_New(PyThreadState *tstate, PyCodeObject *code, PyObject *globals, 623 PyObject *locals) 624 { 625 PyFrameObject *back = tstate->frame; 626 PyFrameObject *f; 627 PyObject *builtins; 628 Py_ssize_t i; 629 630 #ifdef Py_DEBUG 631 if (code == NULL || globals == NULL || !PyDict_Check(globals) || 632 (locals != NULL && !PyMapping_Check(locals))) { 633 PyErr_BadInternalCall(); 634 return NULL; 635 } 636 #endif 637 if (back == NULL || back->f_globals != globals) { 638 builtins = PyDict_GetItem(globals, builtin_object); 639 if (builtins) { 640 if (PyModule_Check(builtins)) { 641 builtins = PyModule_GetDict(builtins); 642 assert(!builtins || PyDict_Check(builtins)); 643 } 644 else if (!PyDict_Check(builtins)) 645 builtins = NULL; 646 } 647 if (builtins == NULL) { 648 /* No builtins! Make up a minimal one 649 Give them 'None', at least. */ 650 builtins = PyDict_New(); 651 if (builtins == NULL || 652 PyDict_SetItemString( 653 builtins, "None", Py_None) < 0) 654 return NULL; 655 } 656 else 657 Py_INCREF(builtins); 658 659 } 660 else { 661 /* If we share the globals, we share the builtins. 662 Save a lookup and a call. */ 663 builtins = back->f_builtins; 664 assert(builtins != NULL && PyDict_Check(builtins)); 665 Py_INCREF(builtins); 666 } 667 if (code->co_zombieframe != NULL) { 668 f = code->co_zombieframe; 669 code->co_zombieframe = NULL; 670 _Py_NewReference((PyObject *)f); 671 assert(f->f_code == code); 672 } 673 else { 674 Py_ssize_t extras, ncells, nfrees; 675 ncells = PyTuple_GET_SIZE(code->co_cellvars); 676 nfrees = PyTuple_GET_SIZE(code->co_freevars); 677 extras = code->co_stacksize + code->co_nlocals + ncells + 678 nfrees; 679 if (free_list == NULL) { 680 f = PyObject_GC_NewVar(PyFrameObject, &PyFrame_Type, 681 extras); 682 if (f == NULL) { 683 Py_DECREF(builtins); 684 return NULL; 685 } 686 } 687 else { 688 assert(numfree > 0); 689 --numfree; 690 f = free_list; 691 free_list = free_list->f_back; 692 if (Py_SIZE(f) < extras) { 693 f = PyObject_GC_Resize(PyFrameObject, f, extras); 694 if (f == NULL) { 695 Py_DECREF(builtins); 696 return NULL; 697 } 698 } 699 _Py_NewReference((PyObject *)f); 700 } 701 702 f->f_code = code; 703 extras = code->co_nlocals + ncells + nfrees; 704 f->f_valuestack = f->f_localsplus + extras; 705 for (i=0; i<extras; i++) 706 f->f_localsplus[i] = NULL; 707 f->f_locals = NULL; 708 f->f_trace = NULL; 709 f->f_exc_type = f->f_exc_value = f->f_exc_traceback = NULL; 710 } 711 f->f_stacktop = f->f_valuestack; 712 f->f_builtins = builtins; 713 Py_XINCREF(back); 714 f->f_back = back; 715 Py_INCREF(code); 716 Py_INCREF(globals); 717 f->f_globals = globals; 718 /* Most functions have CO_NEWLOCALS and CO_OPTIMIZED set. */ 719 if ((code->co_flags & (CO_NEWLOCALS | CO_OPTIMIZED)) == 720 (CO_NEWLOCALS | CO_OPTIMIZED)) 721 ; /* f_locals = NULL; will be set by PyFrame_FastToLocals() */ 722 else if (code->co_flags & CO_NEWLOCALS) { 723 locals = PyDict_New(); 724 if (locals == NULL) { 725 Py_DECREF(f); 726 return NULL; 727 } 728 f->f_locals = locals; 729 } 730 else { 731 if (locals == NULL) 732 locals = globals; 733 Py_INCREF(locals); 734 f->f_locals = locals; 735 } 736 f->f_tstate = tstate; 737 738 f->f_lasti = -1; 739 f->f_lineno = code->co_firstlineno; 740 f->f_iblock = 0; 741 742 _PyObject_GC_TRACK(f); 743 return f; 744 } 745 746 /* Block management */ 747 748 void 749 PyFrame_BlockSetup(PyFrameObject *f, int type, int handler, int level) 750 { 751 PyTryBlock *b; 752 if (f->f_iblock >= CO_MAXBLOCKS) 753 Py_FatalError("XXX block stack overflow"); 754 b = &f->f_blockstack[f->f_iblock++]; 755 b->b_type = type; 756 b->b_level = level; 757 b->b_handler = handler; 758 } 759 760 PyTryBlock * 761 PyFrame_BlockPop(PyFrameObject *f) 762 { 763 PyTryBlock *b; 764 if (f->f_iblock <= 0) 765 Py_FatalError("XXX block stack underflow"); 766 b = &f->f_blockstack[--f->f_iblock]; 767 return b; 768 } 769 770 /* Convert between "fast" version of locals and dictionary version. 771 772 map and values are input arguments. map is a tuple of strings. 773 values is an array of PyObject*. At index i, map[i] is the name of 774 the variable with value values[i]. The function copies the first 775 nmap variable from map/values into dict. If values[i] is NULL, 776 the variable is deleted from dict. 777 778 If deref is true, then the values being copied are cell variables 779 and the value is extracted from the cell variable before being put 780 in dict. 781 782 Exceptions raised while modifying the dict are silently ignored, 783 because there is no good way to report them. 784 */ 785 786 static void 787 map_to_dict(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values, 788 int deref) 789 { 790 Py_ssize_t j; 791 assert(PyTuple_Check(map)); 792 assert(PyDict_Check(dict)); 793 assert(PyTuple_Size(map) >= nmap); 794 for (j = nmap; --j >= 0; ) { 795 PyObject *key = PyTuple_GET_ITEM(map, j); 796 PyObject *value = values[j]; 797 assert(PyString_Check(key)); 798 if (deref) { 799 assert(PyCell_Check(value)); 800 value = PyCell_GET(value); 801 } 802 if (value == NULL) { 803 if (PyObject_DelItem(dict, key) != 0) 804 PyErr_Clear(); 805 } 806 else { 807 if (PyObject_SetItem(dict, key, value) != 0) 808 PyErr_Clear(); 809 } 810 } 811 } 812 813 /* Copy values from the "locals" dict into the fast locals. 814 815 dict is an input argument containing string keys representing 816 variables names and arbitrary PyObject* as values. 817 818 map and values are input arguments. map is a tuple of strings. 819 values is an array of PyObject*. At index i, map[i] is the name of 820 the variable with value values[i]. The function copies the first 821 nmap variable from map/values into dict. If values[i] is NULL, 822 the variable is deleted from dict. 823 824 If deref is true, then the values being copied are cell variables 825 and the value is extracted from the cell variable before being put 826 in dict. If clear is true, then variables in map but not in dict 827 are set to NULL in map; if clear is false, variables missing in 828 dict are ignored. 829 830 Exceptions raised while modifying the dict are silently ignored, 831 because there is no good way to report them. 832 */ 833 834 static void 835 dict_to_map(PyObject *map, Py_ssize_t nmap, PyObject *dict, PyObject **values, 836 int deref, int clear) 837 { 838 Py_ssize_t j; 839 assert(PyTuple_Check(map)); 840 assert(PyDict_Check(dict)); 841 assert(PyTuple_Size(map) >= nmap); 842 for (j = nmap; --j >= 0; ) { 843 PyObject *key = PyTuple_GET_ITEM(map, j); 844 PyObject *value = PyObject_GetItem(dict, key); 845 assert(PyString_Check(key)); 846 /* We only care about NULLs if clear is true. */ 847 if (value == NULL) { 848 PyErr_Clear(); 849 if (!clear) 850 continue; 851 } 852 if (deref) { 853 assert(PyCell_Check(values[j])); 854 if (PyCell_GET(values[j]) != value) { 855 if (PyCell_Set(values[j], value) < 0) 856 PyErr_Clear(); 857 } 858 } else if (values[j] != value) { 859 Py_XINCREF(value); 860 Py_XDECREF(values[j]); 861 values[j] = value; 862 } 863 Py_XDECREF(value); 864 } 865 } 866 867 void 868 PyFrame_FastToLocals(PyFrameObject *f) 869 { 870 /* Merge fast locals into f->f_locals */ 871 PyObject *locals, *map; 872 PyObject **fast; 873 PyObject *error_type, *error_value, *error_traceback; 874 PyCodeObject *co; 875 Py_ssize_t j; 876 int ncells, nfreevars; 877 if (f == NULL) 878 return; 879 locals = f->f_locals; 880 if (locals == NULL) { 881 locals = f->f_locals = PyDict_New(); 882 if (locals == NULL) { 883 PyErr_Clear(); /* Can't report it :-( */ 884 return; 885 } 886 } 887 co = f->f_code; 888 map = co->co_varnames; 889 if (!PyTuple_Check(map)) 890 return; 891 PyErr_Fetch(&error_type, &error_value, &error_traceback); 892 fast = f->f_localsplus; 893 j = PyTuple_GET_SIZE(map); 894 if (j > co->co_nlocals) 895 j = co->co_nlocals; 896 if (co->co_nlocals) 897 map_to_dict(map, j, locals, fast, 0); 898 ncells = PyTuple_GET_SIZE(co->co_cellvars); 899 nfreevars = PyTuple_GET_SIZE(co->co_freevars); 900 if (ncells || nfreevars) { 901 map_to_dict(co->co_cellvars, ncells, 902 locals, fast + co->co_nlocals, 1); 903 /* If the namespace is unoptimized, then one of the 904 following cases applies: 905 1. It does not contain free variables, because it 906 uses import * or is a top-level namespace. 907 2. It is a class namespace. 908 We don't want to accidentally copy free variables 909 into the locals dict used by the class. 910 */ 911 if (co->co_flags & CO_OPTIMIZED) { 912 map_to_dict(co->co_freevars, nfreevars, 913 locals, fast + co->co_nlocals + ncells, 1); 914 } 915 } 916 PyErr_Restore(error_type, error_value, error_traceback); 917 } 918 919 void 920 PyFrame_LocalsToFast(PyFrameObject *f, int clear) 921 { 922 /* Merge f->f_locals into fast locals */ 923 PyObject *locals, *map; 924 PyObject **fast; 925 PyObject *error_type, *error_value, *error_traceback; 926 PyCodeObject *co; 927 Py_ssize_t j; 928 int ncells, nfreevars; 929 if (f == NULL) 930 return; 931 locals = f->f_locals; 932 co = f->f_code; 933 map = co->co_varnames; 934 if (locals == NULL) 935 return; 936 if (!PyTuple_Check(map)) 937 return; 938 PyErr_Fetch(&error_type, &error_value, &error_traceback); 939 fast = f->f_localsplus; 940 j = PyTuple_GET_SIZE(map); 941 if (j > co->co_nlocals) 942 j = co->co_nlocals; 943 if (co->co_nlocals) 944 dict_to_map(co->co_varnames, j, locals, fast, 0, clear); 945 ncells = PyTuple_GET_SIZE(co->co_cellvars); 946 nfreevars = PyTuple_GET_SIZE(co->co_freevars); 947 if (ncells || nfreevars) { 948 dict_to_map(co->co_cellvars, ncells, 949 locals, fast + co->co_nlocals, 1, clear); 950 /* Same test as in PyFrame_FastToLocals() above. */ 951 if (co->co_flags & CO_OPTIMIZED) { 952 dict_to_map(co->co_freevars, nfreevars, 953 locals, fast + co->co_nlocals + ncells, 1, 954 clear); 955 } 956 } 957 PyErr_Restore(error_type, error_value, error_traceback); 958 } 959 960 /* Clear out the free list */ 961 int 962 PyFrame_ClearFreeList(void) 963 { 964 int freelist_size = numfree; 965 966 while (free_list != NULL) { 967 PyFrameObject *f = free_list; 968 free_list = free_list->f_back; 969 PyObject_GC_Del(f); 970 --numfree; 971 } 972 assert(numfree == 0); 973 return freelist_size; 974 } 975 976 void 977 PyFrame_Fini(void) 978 { 979 (void)PyFrame_ClearFreeList(); 980 Py_XDECREF(builtin_object); 981 builtin_object = NULL; 982 } 983 984 /* Print summary info about the state of the optimized allocator */ 985 void 986 _PyFrame_DebugMallocStats(FILE *out) 987 { 988 _PyDebugAllocatorStats(out, 989 "free PyFrameObject", 990 numfree, sizeof(PyFrameObject)); 991 }