Python-2.7.3/Modules/cmathmodule.c

No issues found

   1 /* Complex math module */
   2 
   3 /* much code borrowed from mathmodule.c */
   4 
   5 #include "Python.h"
   6 #include "_math.h"
   7 /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
   8    float.h.  We assume that FLT_RADIX is either 2 or 16. */
   9 #include <float.h>
  10 
  11 #if (FLT_RADIX != 2 && FLT_RADIX != 16)
  12 #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
  13 #endif
  14 
  15 #ifndef M_LN2
  16 #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
  17 #endif
  18 
  19 #ifndef M_LN10
  20 #define M_LN10 (2.302585092994045684) /* natural log of 10 */
  21 #endif
  22 
  23 /*
  24    CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
  25    inverse trig and inverse hyperbolic trig functions.  Its log is used in the
  26    evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
  27    overflow.
  28  */
  29 
  30 #define CM_LARGE_DOUBLE (DBL_MAX/4.)
  31 #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
  32 #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
  33 #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
  34 
  35 /*
  36    CM_SCALE_UP is an odd integer chosen such that multiplication by
  37    2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
  38    CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
  39    square roots accurately when the real and imaginary parts of the argument
  40    are subnormal.
  41 */
  42 
  43 #if FLT_RADIX==2
  44 #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
  45 #elif FLT_RADIX==16
  46 #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
  47 #endif
  48 #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
  49 
  50 /* forward declarations */
  51 static Py_complex c_asinh(Py_complex);
  52 static Py_complex c_atanh(Py_complex);
  53 static Py_complex c_cosh(Py_complex);
  54 static Py_complex c_sinh(Py_complex);
  55 static Py_complex c_sqrt(Py_complex);
  56 static Py_complex c_tanh(Py_complex);
  57 static PyObject * math_error(void);
  58 
  59 /* Code to deal with special values (infinities, NaNs, etc.). */
  60 
  61 /* special_type takes a double and returns an integer code indicating
  62    the type of the double as follows:
  63 */
  64 
  65 enum special_types {
  66     ST_NINF,            /* 0, negative infinity */
  67     ST_NEG,             /* 1, negative finite number (nonzero) */
  68     ST_NZERO,           /* 2, -0. */
  69     ST_PZERO,           /* 3, +0. */
  70     ST_POS,             /* 4, positive finite number (nonzero) */
  71     ST_PINF,            /* 5, positive infinity */
  72     ST_NAN              /* 6, Not a Number */
  73 };
  74 
  75 static enum special_types
  76 special_type(double d)
  77 {
  78     if (Py_IS_FINITE(d)) {
  79         if (d != 0) {
  80             if (copysign(1., d) == 1.)
  81                 return ST_POS;
  82             else
  83                 return ST_NEG;
  84         }
  85         else {
  86             if (copysign(1., d) == 1.)
  87                 return ST_PZERO;
  88             else
  89                 return ST_NZERO;
  90         }
  91     }
  92     if (Py_IS_NAN(d))
  93         return ST_NAN;
  94     if (copysign(1., d) == 1.)
  95         return ST_PINF;
  96     else
  97         return ST_NINF;
  98 }
  99 
 100 #define SPECIAL_VALUE(z, table)                                         \
 101     if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {           \
 102         errno = 0;                                              \
 103         return table[special_type((z).real)]                            \
 104                     [special_type((z).imag)];                           \
 105     }
 106 
 107 #define P Py_MATH_PI
 108 #define P14 0.25*Py_MATH_PI
 109 #define P12 0.5*Py_MATH_PI
 110 #define P34 0.75*Py_MATH_PI
 111 #define INF Py_HUGE_VAL
 112 #define N Py_NAN
 113 #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
 114 
 115 /* First, the C functions that do the real work.  Each of the c_*
 116    functions computes and returns the C99 Annex G recommended result
 117    and also sets errno as follows: errno = 0 if no floating-point
 118    exception is associated with the result; errno = EDOM if C99 Annex
 119    G recommends raising divide-by-zero or invalid for this result; and
 120    errno = ERANGE where the overflow floating-point signal should be
 121    raised.
 122 */
 123 
 124 static Py_complex acos_special_values[7][7];
 125 
 126 static Py_complex
 127 c_acos(Py_complex z)
 128 {
 129     Py_complex s1, s2, r;
 130 
 131     SPECIAL_VALUE(z, acos_special_values);
 132 
 133     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 134         /* avoid unnecessary overflow for large arguments */
 135         r.real = atan2(fabs(z.imag), z.real);
 136         /* split into cases to make sure that the branch cut has the
 137            correct continuity on systems with unsigned zeros */
 138         if (z.real < 0.) {
 139             r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
 140                                M_LN2*2., z.imag);
 141         } else {
 142             r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
 143                               M_LN2*2., -z.imag);
 144         }
 145     } else {
 146         s1.real = 1.-z.real;
 147         s1.imag = -z.imag;
 148         s1 = c_sqrt(s1);
 149         s2.real = 1.+z.real;
 150         s2.imag = z.imag;
 151         s2 = c_sqrt(s2);
 152         r.real = 2.*atan2(s1.real, s2.real);
 153         r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
 154     }
 155     errno = 0;
 156     return r;
 157 }
 158 
 159 PyDoc_STRVAR(c_acos_doc,
 160 "acos(x)\n"
 161 "\n"
 162 "Return the arc cosine of x.");
 163 
 164 
 165 static Py_complex acosh_special_values[7][7];
 166 
 167 static Py_complex
 168 c_acosh(Py_complex z)
 169 {
 170     Py_complex s1, s2, r;
 171 
 172     SPECIAL_VALUE(z, acosh_special_values);
 173 
 174     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 175         /* avoid unnecessary overflow for large arguments */
 176         r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
 177         r.imag = atan2(z.imag, z.real);
 178     } else {
 179         s1.real = z.real - 1.;
 180         s1.imag = z.imag;
 181         s1 = c_sqrt(s1);
 182         s2.real = z.real + 1.;
 183         s2.imag = z.imag;
 184         s2 = c_sqrt(s2);
 185         r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
 186         r.imag = 2.*atan2(s1.imag, s2.real);
 187     }
 188     errno = 0;
 189     return r;
 190 }
 191 
 192 PyDoc_STRVAR(c_acosh_doc,
 193 "acosh(x)\n"
 194 "\n"
 195 "Return the hyperbolic arccosine of x.");
 196 
 197 
 198 static Py_complex
 199 c_asin(Py_complex z)
 200 {
 201     /* asin(z) = -i asinh(iz) */
 202     Py_complex s, r;
 203     s.real = -z.imag;
 204     s.imag = z.real;
 205     s = c_asinh(s);
 206     r.real = s.imag;
 207     r.imag = -s.real;
 208     return r;
 209 }
 210 
 211 PyDoc_STRVAR(c_asin_doc,
 212 "asin(x)\n"
 213 "\n"
 214 "Return the arc sine of x.");
 215 
 216 
 217 static Py_complex asinh_special_values[7][7];
 218 
 219 static Py_complex
 220 c_asinh(Py_complex z)
 221 {
 222     Py_complex s1, s2, r;
 223 
 224     SPECIAL_VALUE(z, asinh_special_values);
 225 
 226     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
 227         if (z.imag >= 0.) {
 228             r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
 229                               M_LN2*2., z.real);
 230         } else {
 231             r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
 232                                M_LN2*2., -z.real);
 233         }
 234         r.imag = atan2(z.imag, fabs(z.real));
 235     } else {
 236         s1.real = 1.+z.imag;
 237         s1.imag = -z.real;
 238         s1 = c_sqrt(s1);
 239         s2.real = 1.-z.imag;
 240         s2.imag = z.real;
 241         s2 = c_sqrt(s2);
 242         r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
 243         r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
 244     }
 245     errno = 0;
 246     return r;
 247 }
 248 
 249 PyDoc_STRVAR(c_asinh_doc,
 250 "asinh(x)\n"
 251 "\n"
 252 "Return the hyperbolic arc sine of x.");
 253 
 254 
 255 static Py_complex
 256 c_atan(Py_complex z)
 257 {
 258     /* atan(z) = -i atanh(iz) */
 259     Py_complex s, r;
 260     s.real = -z.imag;
 261     s.imag = z.real;
 262     s = c_atanh(s);
 263     r.real = s.imag;
 264     r.imag = -s.real;
 265     return r;
 266 }
 267 
 268 /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
 269    C99 for atan2(0., 0.). */
 270 static double
 271 c_atan2(Py_complex z)
 272 {
 273     if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
 274         return Py_NAN;
 275     if (Py_IS_INFINITY(z.imag)) {
 276         if (Py_IS_INFINITY(z.real)) {
 277             if (copysign(1., z.real) == 1.)
 278                 /* atan2(+-inf, +inf) == +-pi/4 */
 279                 return copysign(0.25*Py_MATH_PI, z.imag);
 280             else
 281                 /* atan2(+-inf, -inf) == +-pi*3/4 */
 282                 return copysign(0.75*Py_MATH_PI, z.imag);
 283         }
 284         /* atan2(+-inf, x) == +-pi/2 for finite x */
 285         return copysign(0.5*Py_MATH_PI, z.imag);
 286     }
 287     if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
 288         if (copysign(1., z.real) == 1.)
 289             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
 290             return copysign(0., z.imag);
 291         else
 292             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
 293             return copysign(Py_MATH_PI, z.imag);
 294     }
 295     return atan2(z.imag, z.real);
 296 }
 297 
 298 PyDoc_STRVAR(c_atan_doc,
 299 "atan(x)\n"
 300 "\n"
 301 "Return the arc tangent of x.");
 302 
 303 
 304 static Py_complex atanh_special_values[7][7];
 305 
 306 static Py_complex
 307 c_atanh(Py_complex z)
 308 {
 309     Py_complex r;
 310     double ay, h;
 311 
 312     SPECIAL_VALUE(z, atanh_special_values);
 313 
 314     /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
 315     if (z.real < 0.) {
 316         return c_neg(c_atanh(c_neg(z)));
 317     }
 318 
 319     ay = fabs(z.imag);
 320     if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
 321         /*
 322            if abs(z) is large then we use the approximation
 323            atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
 324            of z.imag)
 325         */
 326         h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
 327         r.real = z.real/4./h/h;
 328         /* the two negations in the next line cancel each other out
 329            except when working with unsigned zeros: they're there to
 330            ensure that the branch cut has the correct continuity on
 331            systems that don't support signed zeros */
 332         r.imag = -copysign(Py_MATH_PI/2., -z.imag);
 333         errno = 0;
 334     } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
 335         /* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
 336         if (ay == 0.) {
 337             r.real = INF;
 338             r.imag = z.imag;
 339             errno = EDOM;
 340         } else {
 341             r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
 342             r.imag = copysign(atan2(2., -ay)/2, z.imag);
 343             errno = 0;
 344         }
 345     } else {
 346         r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
 347         r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
 348         errno = 0;
 349     }
 350     return r;
 351 }
 352 
 353 PyDoc_STRVAR(c_atanh_doc,
 354 "atanh(x)\n"
 355 "\n"
 356 "Return the hyperbolic arc tangent of x.");
 357 
 358 
 359 static Py_complex
 360 c_cos(Py_complex z)
 361 {
 362     /* cos(z) = cosh(iz) */
 363     Py_complex r;
 364     r.real = -z.imag;
 365     r.imag = z.real;
 366     r = c_cosh(r);
 367     return r;
 368 }
 369 
 370 PyDoc_STRVAR(c_cos_doc,
 371 "cos(x)\n"
 372 "\n"
 373 "Return the cosine of x.");
 374 
 375 
 376 /* cosh(infinity + i*y) needs to be dealt with specially */
 377 static Py_complex cosh_special_values[7][7];
 378 
 379 static Py_complex
 380 c_cosh(Py_complex z)
 381 {
 382     Py_complex r;
 383     double x_minus_one;
 384 
 385     /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
 386     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 387         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
 388             (z.imag != 0.)) {
 389             if (z.real > 0) {
 390                 r.real = copysign(INF, cos(z.imag));
 391                 r.imag = copysign(INF, sin(z.imag));
 392             }
 393             else {
 394                 r.real = copysign(INF, cos(z.imag));
 395                 r.imag = -copysign(INF, sin(z.imag));
 396             }
 397         }
 398         else {
 399             r = cosh_special_values[special_type(z.real)]
 400                                    [special_type(z.imag)];
 401         }
 402         /* need to set errno = EDOM if y is +/- infinity and x is not
 403            a NaN */
 404         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
 405             errno = EDOM;
 406         else
 407             errno = 0;
 408         return r;
 409     }
 410 
 411     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 412         /* deal correctly with cases where cosh(z.real) overflows but
 413            cosh(z) does not. */
 414         x_minus_one = z.real - copysign(1., z.real);
 415         r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
 416         r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
 417     } else {
 418         r.real = cos(z.imag) * cosh(z.real);
 419         r.imag = sin(z.imag) * sinh(z.real);
 420     }
 421     /* detect overflow, and set errno accordingly */
 422     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 423         errno = ERANGE;
 424     else
 425         errno = 0;
 426     return r;
 427 }
 428 
 429 PyDoc_STRVAR(c_cosh_doc,
 430 "cosh(x)\n"
 431 "\n"
 432 "Return the hyperbolic cosine of x.");
 433 
 434 
 435 /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
 436    finite y */
 437 static Py_complex exp_special_values[7][7];
 438 
 439 static Py_complex
 440 c_exp(Py_complex z)
 441 {
 442     Py_complex r;
 443     double l;
 444 
 445     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 446         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 447             && (z.imag != 0.)) {
 448             if (z.real > 0) {
 449                 r.real = copysign(INF, cos(z.imag));
 450                 r.imag = copysign(INF, sin(z.imag));
 451             }
 452             else {
 453                 r.real = copysign(0., cos(z.imag));
 454                 r.imag = copysign(0., sin(z.imag));
 455             }
 456         }
 457         else {
 458             r = exp_special_values[special_type(z.real)]
 459                                   [special_type(z.imag)];
 460         }
 461         /* need to set errno = EDOM if y is +/- infinity and x is not
 462            a NaN and not -infinity */
 463         if (Py_IS_INFINITY(z.imag) &&
 464             (Py_IS_FINITE(z.real) ||
 465              (Py_IS_INFINITY(z.real) && z.real > 0)))
 466             errno = EDOM;
 467         else
 468             errno = 0;
 469         return r;
 470     }
 471 
 472     if (z.real > CM_LOG_LARGE_DOUBLE) {
 473         l = exp(z.real-1.);
 474         r.real = l*cos(z.imag)*Py_MATH_E;
 475         r.imag = l*sin(z.imag)*Py_MATH_E;
 476     } else {
 477         l = exp(z.real);
 478         r.real = l*cos(z.imag);
 479         r.imag = l*sin(z.imag);
 480     }
 481     /* detect overflow, and set errno accordingly */
 482     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 483         errno = ERANGE;
 484     else
 485         errno = 0;
 486     return r;
 487 }
 488 
 489 PyDoc_STRVAR(c_exp_doc,
 490 "exp(x)\n"
 491 "\n"
 492 "Return the exponential value e**x.");
 493 
 494 
 495 static Py_complex log_special_values[7][7];
 496 
 497 static Py_complex
 498 c_log(Py_complex z)
 499 {
 500     /*
 501        The usual formula for the real part is log(hypot(z.real, z.imag)).
 502        There are four situations where this formula is potentially
 503        problematic:
 504 
 505        (1) the absolute value of z is subnormal.  Then hypot is subnormal,
 506        so has fewer than the usual number of bits of accuracy, hence may
 507        have large relative error.  This then gives a large absolute error
 508        in the log.  This can be solved by rescaling z by a suitable power
 509        of 2.
 510 
 511        (2) the absolute value of z is greater than DBL_MAX (e.g. when both
 512        z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
 513        Again, rescaling solves this.
 514 
 515        (3) the absolute value of z is close to 1.  In this case it's
 516        difficult to achieve good accuracy, at least in part because a
 517        change of 1ulp in the real or imaginary part of z can result in a
 518        change of billions of ulps in the correctly rounded answer.
 519 
 520        (4) z = 0.  The simplest thing to do here is to call the
 521        floating-point log with an argument of 0, and let its behaviour
 522        (returning -infinity, signaling a floating-point exception, setting
 523        errno, or whatever) determine that of c_log.  So the usual formula
 524        is fine here.
 525 
 526      */
 527 
 528     Py_complex r;
 529     double ax, ay, am, an, h;
 530 
 531     SPECIAL_VALUE(z, log_special_values);
 532 
 533     ax = fabs(z.real);
 534     ay = fabs(z.imag);
 535 
 536     if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
 537         r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
 538     } else if (ax < DBL_MIN && ay < DBL_MIN) {
 539         if (ax > 0. || ay > 0.) {
 540             /* catch cases where hypot(ax, ay) is subnormal */
 541             r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
 542                      ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
 543         }
 544         else {
 545             /* log(+/-0. +/- 0i) */
 546             r.real = -INF;
 547             r.imag = atan2(z.imag, z.real);
 548             errno = EDOM;
 549             return r;
 550         }
 551     } else {
 552         h = hypot(ax, ay);
 553         if (0.71 <= h && h <= 1.73) {
 554             am = ax > ay ? ax : ay;  /* max(ax, ay) */
 555             an = ax > ay ? ay : ax;  /* min(ax, ay) */
 556             r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
 557         } else {
 558             r.real = log(h);
 559         }
 560     }
 561     r.imag = atan2(z.imag, z.real);
 562     errno = 0;
 563     return r;
 564 }
 565 
 566 
 567 static Py_complex
 568 c_log10(Py_complex z)
 569 {
 570     Py_complex r;
 571     int errno_save;
 572 
 573     r = c_log(z);
 574     errno_save = errno; /* just in case the divisions affect errno */
 575     r.real = r.real / M_LN10;
 576     r.imag = r.imag / M_LN10;
 577     errno = errno_save;
 578     return r;
 579 }
 580 
 581 PyDoc_STRVAR(c_log10_doc,
 582 "log10(x)\n"
 583 "\n"
 584 "Return the base-10 logarithm of x.");
 585 
 586 
 587 static Py_complex
 588 c_sin(Py_complex z)
 589 {
 590     /* sin(z) = -i sin(iz) */
 591     Py_complex s, r;
 592     s.real = -z.imag;
 593     s.imag = z.real;
 594     s = c_sinh(s);
 595     r.real = s.imag;
 596     r.imag = -s.real;
 597     return r;
 598 }
 599 
 600 PyDoc_STRVAR(c_sin_doc,
 601 "sin(x)\n"
 602 "\n"
 603 "Return the sine of x.");
 604 
 605 
 606 /* sinh(infinity + i*y) needs to be dealt with specially */
 607 static Py_complex sinh_special_values[7][7];
 608 
 609 static Py_complex
 610 c_sinh(Py_complex z)
 611 {
 612     Py_complex r;
 613     double x_minus_one;
 614 
 615     /* special treatment for sinh(+/-inf + iy) if y is finite and
 616        nonzero */
 617     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 618         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 619             && (z.imag != 0.)) {
 620             if (z.real > 0) {
 621                 r.real = copysign(INF, cos(z.imag));
 622                 r.imag = copysign(INF, sin(z.imag));
 623             }
 624             else {
 625                 r.real = -copysign(INF, cos(z.imag));
 626                 r.imag = copysign(INF, sin(z.imag));
 627             }
 628         }
 629         else {
 630             r = sinh_special_values[special_type(z.real)]
 631                                    [special_type(z.imag)];
 632         }
 633         /* need to set errno = EDOM if y is +/- infinity and x is not
 634            a NaN */
 635         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
 636             errno = EDOM;
 637         else
 638             errno = 0;
 639         return r;
 640     }
 641 
 642     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 643         x_minus_one = z.real - copysign(1., z.real);
 644         r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
 645         r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
 646     } else {
 647         r.real = cos(z.imag) * sinh(z.real);
 648         r.imag = sin(z.imag) * cosh(z.real);
 649     }
 650     /* detect overflow, and set errno accordingly */
 651     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
 652         errno = ERANGE;
 653     else
 654         errno = 0;
 655     return r;
 656 }
 657 
 658 PyDoc_STRVAR(c_sinh_doc,
 659 "sinh(x)\n"
 660 "\n"
 661 "Return the hyperbolic sine of x.");
 662 
 663 
 664 static Py_complex sqrt_special_values[7][7];
 665 
 666 static Py_complex
 667 c_sqrt(Py_complex z)
 668 {
 669     /*
 670        Method: use symmetries to reduce to the case when x = z.real and y
 671        = z.imag are nonnegative.  Then the real part of the result is
 672        given by
 673 
 674          s = sqrt((x + hypot(x, y))/2)
 675 
 676        and the imaginary part is
 677 
 678          d = (y/2)/s
 679 
 680        If either x or y is very large then there's a risk of overflow in
 681        computation of the expression x + hypot(x, y).  We can avoid this
 682        by rewriting the formula for s as:
 683 
 684          s = 2*sqrt(x/8 + hypot(x/8, y/8))
 685 
 686        This costs us two extra multiplications/divisions, but avoids the
 687        overhead of checking for x and y large.
 688 
 689        If both x and y are subnormal then hypot(x, y) may also be
 690        subnormal, so will lack full precision.  We solve this by rescaling
 691        x and y by a sufficiently large power of 2 to ensure that x and y
 692        are normal.
 693     */
 694 
 695 
 696     Py_complex r;
 697     double s,d;
 698     double ax, ay;
 699 
 700     SPECIAL_VALUE(z, sqrt_special_values);
 701 
 702     if (z.real == 0. && z.imag == 0.) {
 703         r.real = 0.;
 704         r.imag = z.imag;
 705         return r;
 706     }
 707 
 708     ax = fabs(z.real);
 709     ay = fabs(z.imag);
 710 
 711     if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
 712         /* here we catch cases where hypot(ax, ay) is subnormal */
 713         ax = ldexp(ax, CM_SCALE_UP);
 714         s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
 715                   CM_SCALE_DOWN);
 716     } else {
 717         ax /= 8.;
 718         s = 2.*sqrt(ax + hypot(ax, ay/8.));
 719     }
 720     d = ay/(2.*s);
 721 
 722     if (z.real >= 0.) {
 723         r.real = s;
 724         r.imag = copysign(d, z.imag);
 725     } else {
 726         r.real = d;
 727         r.imag = copysign(s, z.imag);
 728     }
 729     errno = 0;
 730     return r;
 731 }
 732 
 733 PyDoc_STRVAR(c_sqrt_doc,
 734 "sqrt(x)\n"
 735 "\n"
 736 "Return the square root of x.");
 737 
 738 
 739 static Py_complex
 740 c_tan(Py_complex z)
 741 {
 742     /* tan(z) = -i tanh(iz) */
 743     Py_complex s, r;
 744     s.real = -z.imag;
 745     s.imag = z.real;
 746     s = c_tanh(s);
 747     r.real = s.imag;
 748     r.imag = -s.real;
 749     return r;
 750 }
 751 
 752 PyDoc_STRVAR(c_tan_doc,
 753 "tan(x)\n"
 754 "\n"
 755 "Return the tangent of x.");
 756 
 757 
 758 /* tanh(infinity + i*y) needs to be dealt with specially */
 759 static Py_complex tanh_special_values[7][7];
 760 
 761 static Py_complex
 762 c_tanh(Py_complex z)
 763 {
 764     /* Formula:
 765 
 766        tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
 767        (1+tan(y)^2 tanh(x)^2)
 768 
 769        To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
 770        as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
 771        by 4 exp(-2*x) instead, to avoid possible overflow in the
 772        computation of cosh(x).
 773 
 774     */
 775 
 776     Py_complex r;
 777     double tx, ty, cx, txty, denom;
 778 
 779     /* special treatment for tanh(+/-inf + iy) if y is finite and
 780        nonzero */
 781     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
 782         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
 783             && (z.imag != 0.)) {
 784             if (z.real > 0) {
 785                 r.real = 1.0;
 786                 r.imag = copysign(0.,
 787                                   2.*sin(z.imag)*cos(z.imag));
 788             }
 789             else {
 790                 r.real = -1.0;
 791                 r.imag = copysign(0.,
 792                                   2.*sin(z.imag)*cos(z.imag));
 793             }
 794         }
 795         else {
 796             r = tanh_special_values[special_type(z.real)]
 797                                    [special_type(z.imag)];
 798         }
 799         /* need to set errno = EDOM if z.imag is +/-infinity and
 800            z.real is finite */
 801         if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
 802             errno = EDOM;
 803         else
 804             errno = 0;
 805         return r;
 806     }
 807 
 808     /* danger of overflow in 2.*z.imag !*/
 809     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
 810         r.real = copysign(1., z.real);
 811         r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
 812     } else {
 813         tx = tanh(z.real);
 814         ty = tan(z.imag);
 815         cx = 1./cosh(z.real);
 816         txty = tx*ty;
 817         denom = 1. + txty*txty;
 818         r.real = tx*(1.+ty*ty)/denom;
 819         r.imag = ((ty/denom)*cx)*cx;
 820     }
 821     errno = 0;
 822     return r;
 823 }
 824 
 825 PyDoc_STRVAR(c_tanh_doc,
 826 "tanh(x)\n"
 827 "\n"
 828 "Return the hyperbolic tangent of x.");
 829 
 830 
 831 static PyObject *
 832 cmath_log(PyObject *self, PyObject *args)
 833 {
 834     Py_complex x;
 835     Py_complex y;
 836 
 837     if (!PyArg_ParseTuple(args, "D|D", &x, &y))
 838         return NULL;
 839 
 840     errno = 0;
 841     PyFPE_START_PROTECT("complex function", return 0)
 842     x = c_log(x);
 843     if (PyTuple_GET_SIZE(args) == 2) {
 844         y = c_log(y);
 845         x = c_quot(x, y);
 846     }
 847     PyFPE_END_PROTECT(x)
 848     if (errno != 0)
 849         return math_error();
 850     return PyComplex_FromCComplex(x);
 851 }
 852 
 853 PyDoc_STRVAR(cmath_log_doc,
 854 "log(x[, base]) -> the logarithm of x to the given base.\n\
 855 If the base not specified, returns the natural logarithm (base e) of x.");
 856 
 857 
 858 /* And now the glue to make them available from Python: */
 859 
 860 static PyObject *
 861 math_error(void)
 862 {
 863     if (errno == EDOM)
 864         PyErr_SetString(PyExc_ValueError, "math domain error");
 865     else if (errno == ERANGE)
 866         PyErr_SetString(PyExc_OverflowError, "math range error");
 867     else    /* Unexpected math error */
 868         PyErr_SetFromErrno(PyExc_ValueError);
 869     return NULL;
 870 }
 871 
 872 static PyObject *
 873 math_1(PyObject *args, Py_complex (*func)(Py_complex))
 874 {
 875     Py_complex x,r ;
 876     if (!PyArg_ParseTuple(args, "D", &x))
 877         return NULL;
 878     errno = 0;
 879     PyFPE_START_PROTECT("complex function", return 0);
 880     r = (*func)(x);
 881     PyFPE_END_PROTECT(r);
 882     if (errno == EDOM) {
 883         PyErr_SetString(PyExc_ValueError, "math domain error");
 884         return NULL;
 885     }
 886     else if (errno == ERANGE) {
 887         PyErr_SetString(PyExc_OverflowError, "math range error");
 888         return NULL;
 889     }
 890     else {
 891         return PyComplex_FromCComplex(r);
 892     }
 893 }
 894 
 895 #define FUNC1(stubname, func) \
 896     static PyObject * stubname(PyObject *self, PyObject *args) { \
 897         return math_1(args, func); \
 898     }
 899 
 900 FUNC1(cmath_acos, c_acos)
 901 FUNC1(cmath_acosh, c_acosh)
 902 FUNC1(cmath_asin, c_asin)
 903 FUNC1(cmath_asinh, c_asinh)
 904 FUNC1(cmath_atan, c_atan)
 905 FUNC1(cmath_atanh, c_atanh)
 906 FUNC1(cmath_cos, c_cos)
 907 FUNC1(cmath_cosh, c_cosh)
 908 FUNC1(cmath_exp, c_exp)
 909 FUNC1(cmath_log10, c_log10)
 910 FUNC1(cmath_sin, c_sin)
 911 FUNC1(cmath_sinh, c_sinh)
 912 FUNC1(cmath_sqrt, c_sqrt)
 913 FUNC1(cmath_tan, c_tan)
 914 FUNC1(cmath_tanh, c_tanh)
 915 
 916 static PyObject *
 917 cmath_phase(PyObject *self, PyObject *args)
 918 {
 919     Py_complex z;
 920     double phi;
 921     if (!PyArg_ParseTuple(args, "D:phase", &z))
 922         return NULL;
 923     errno = 0;
 924     PyFPE_START_PROTECT("arg function", return 0)
 925     phi = c_atan2(z);
 926     PyFPE_END_PROTECT(phi)
 927     if (errno != 0)
 928         return math_error();
 929     else
 930         return PyFloat_FromDouble(phi);
 931 }
 932 
 933 PyDoc_STRVAR(cmath_phase_doc,
 934 "phase(z) -> float\n\n\
 935 Return argument, also known as the phase angle, of a complex.");
 936 
 937 static PyObject *
 938 cmath_polar(PyObject *self, PyObject *args)
 939 {
 940     Py_complex z;
 941     double r, phi;
 942     if (!PyArg_ParseTuple(args, "D:polar", &z))
 943         return NULL;
 944     PyFPE_START_PROTECT("polar function", return 0)
 945     phi = c_atan2(z); /* should not cause any exception */
 946     r = c_abs(z); /* sets errno to ERANGE on overflow;  otherwise 0 */
 947     PyFPE_END_PROTECT(r)
 948     if (errno != 0)
 949         return math_error();
 950     else
 951         return Py_BuildValue("dd", r, phi);
 952 }
 953 
 954 PyDoc_STRVAR(cmath_polar_doc,
 955 "polar(z) -> r: float, phi: float\n\n\
 956 Convert a complex from rectangular coordinates to polar coordinates. r is\n\
 957 the distance from 0 and phi the phase angle.");
 958 
 959 /*
 960   rect() isn't covered by the C99 standard, but it's not too hard to
 961   figure out 'spirit of C99' rules for special value handing:
 962 
 963     rect(x, t) should behave like exp(log(x) + it) for positive-signed x
 964     rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
 965     rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
 966       gives nan +- i0 with the sign of the imaginary part unspecified.
 967 
 968 */
 969 
 970 static Py_complex rect_special_values[7][7];
 971 
 972 static PyObject *
 973 cmath_rect(PyObject *self, PyObject *args)
 974 {
 975     Py_complex z;
 976     double r, phi;
 977     if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
 978         return NULL;
 979     errno = 0;
 980     PyFPE_START_PROTECT("rect function", return 0)
 981 
 982     /* deal with special values */
 983     if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
 984         /* if r is +/-infinity and phi is finite but nonzero then
 985            result is (+-INF +-INF i), but we need to compute cos(phi)
 986            and sin(phi) to figure out the signs. */
 987         if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
 988                                   && (phi != 0.))) {
 989             if (r > 0) {
 990                 z.real = copysign(INF, cos(phi));
 991                 z.imag = copysign(INF, sin(phi));
 992             }
 993             else {
 994                 z.real = -copysign(INF, cos(phi));
 995                 z.imag = -copysign(INF, sin(phi));
 996             }
 997         }
 998         else {
 999             z = rect_special_values[special_type(r)]
1000                                    [special_type(phi)];
1001         }
1002         /* need to set errno = EDOM if r is a nonzero number and phi
1003            is infinite */
1004         if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
1005             errno = EDOM;
1006         else
1007             errno = 0;
1008     }
1009     else {
1010         z.real = r * cos(phi);
1011         z.imag = r * sin(phi);
1012         errno = 0;
1013     }
1014 
1015     PyFPE_END_PROTECT(z)
1016     if (errno != 0)
1017         return math_error();
1018     else
1019         return PyComplex_FromCComplex(z);
1020 }
1021 
1022 PyDoc_STRVAR(cmath_rect_doc,
1023 "rect(r, phi) -> z: complex\n\n\
1024 Convert from polar coordinates to rectangular coordinates.");
1025 
1026 static PyObject *
1027 cmath_isnan(PyObject *self, PyObject *args)
1028 {
1029     Py_complex z;
1030     if (!PyArg_ParseTuple(args, "D:isnan", &z))
1031         return NULL;
1032     return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
1033 }
1034 
1035 PyDoc_STRVAR(cmath_isnan_doc,
1036 "isnan(z) -> bool\n\
1037 Checks if the real or imaginary part of z not a number (NaN)");
1038 
1039 static PyObject *
1040 cmath_isinf(PyObject *self, PyObject *args)
1041 {
1042     Py_complex z;
1043     if (!PyArg_ParseTuple(args, "D:isnan", &z))
1044         return NULL;
1045     return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
1046                            Py_IS_INFINITY(z.imag));
1047 }
1048 
1049 PyDoc_STRVAR(cmath_isinf_doc,
1050 "isinf(z) -> bool\n\
1051 Checks if the real or imaginary part of z is infinite.");
1052 
1053 
1054 PyDoc_STRVAR(module_doc,
1055 "This module is always available. It provides access to mathematical\n"
1056 "functions for complex numbers.");
1057 
1058 static PyMethodDef cmath_methods[] = {
1059     {"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
1060     {"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
1061     {"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
1062     {"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
1063     {"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
1064     {"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
1065     {"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
1066     {"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
1067     {"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
1068     {"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
1069     {"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
1070     {"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
1071     {"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
1072     {"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
1073     {"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
1074     {"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
1075     {"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
1076     {"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
1077     {"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
1078     {"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
1079     {"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
1080     {NULL,              NULL}           /* sentinel */
1081 };
1082 
1083 PyMODINIT_FUNC
1084 initcmath(void)
1085 {
1086     PyObject *m;
1087 
1088     m = Py_InitModule3("cmath", cmath_methods, module_doc);
1089     if (m == NULL)
1090         return;
1091 
1092     PyModule_AddObject(m, "pi",
1093                        PyFloat_FromDouble(Py_MATH_PI));
1094     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
1095 
1096     /* initialize special value tables */
1097 
1098 #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
1099 #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
1100 
1101     INIT_SPECIAL_VALUES(acos_special_values, {
1102       C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
1103       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
1104       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
1105       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
1106       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
1107       C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
1108       C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
1109     })
1110 
1111     INIT_SPECIAL_VALUES(acosh_special_values, {
1112       C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
1113       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
1114       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
1115       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
1116       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
1117       C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1118       C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
1119     })
1120 
1121     INIT_SPECIAL_VALUES(asinh_special_values, {
1122       C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
1123       C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
1124       C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
1125       C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
1126       C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
1127       C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
1128       C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
1129     })
1130 
1131     INIT_SPECIAL_VALUES(atanh_special_values, {
1132       C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
1133       C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
1134       C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
1135       C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
1136       C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
1137       C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
1138       C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
1139     })
1140 
1141     INIT_SPECIAL_VALUES(cosh_special_values, {
1142       C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
1143       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
1144       C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
1145       C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
1146       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
1147       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
1148       C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
1149     })
1150 
1151     INIT_SPECIAL_VALUES(exp_special_values, {
1152       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
1153       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
1154       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
1155       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
1156       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
1157       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1158       C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
1159     })
1160 
1161     INIT_SPECIAL_VALUES(log_special_values, {
1162       C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
1163       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
1164       C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
1165       C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
1166       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
1167       C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
1168       C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
1169     })
1170 
1171     INIT_SPECIAL_VALUES(sinh_special_values, {
1172       C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
1173       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
1174       C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
1175       C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
1176       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
1177       C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
1178       C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
1179     })
1180 
1181     INIT_SPECIAL_VALUES(sqrt_special_values, {
1182       C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
1183       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
1184       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
1185       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
1186       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
1187       C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
1188       C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
1189     })
1190 
1191     INIT_SPECIAL_VALUES(tanh_special_values, {
1192       C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
1193       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
1194       C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
1195       C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
1196       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
1197       C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
1198       C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
1199     })
1200 
1201     INIT_SPECIAL_VALUES(rect_special_values, {
1202       C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
1203       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
1204       C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
1205       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
1206       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
1207       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
1208       C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
1209     })
1210 }